

## Revision - Part 2

### Reinforcement learning

2023, Exercise 3.1

Consider the definitions of  $v$  function and  $q$  function:

$$v(s_t) = \mathbb{E}[G_t | S_t = s_t] \quad \text{and} \quad q(s_t, a_t) = \mathbb{E}[G_t | S_t = s_t, A_t = a_t], \quad (1)$$

where  $s_t$  and  $a_t$  are the state and the action at step  $t$  of a Markov decision process,  $S_t$  and  $A_t$  are the corresponding random variables,  $\gamma$  is the discount factor and  $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k}$  is the discounted cumulative reward ( $R_t$  is the random variable representing the reward obtained at step  $t$ ). Provide a proof of the following relations linking the  $q$  function and the  $v$  function:

$$v(s_t) = \int_{\mathcal{A}} \pi(a_t | S_t = s_t) q(s_t, a_t) da_t \quad (2)$$

and

$$q(s_t, a_t) = \int_{\mathcal{S}} \int_{\mathcal{R}} p(s_{t+1}, r_t | S_t = s_t, A_t = a_t) [r_t + \gamma v(s_{t+1})] ds_{t+1} dr_t, \quad (3)$$

where  $\pi(a_t | S_t = s_t)$  is the action distribution defined by the policy and  $p(s_{t+1}, r_t | S_t = s_t, A_t = a_t)$  is the transition probability distribution, defining the probability of reaching the state  $s_{t+1}$  choosing the action  $a_t$  in the state  $s_t$ , and of obtaining a reward  $r_t$  in the process. Here  $\mathcal{A}$ ,  $\mathcal{S}$ , and  $\mathcal{R}$  are the action, state and reward spaces, respectively.<sup>a</sup> In your calculations, feel free to use the notation abuse for the conditioning to the observed values of states and actions, so that, e.g.,  $\mathbb{E}[G_t | S_t = s_t]$  can be written  $\mathbb{E}[G_t | s_t]$  and  $p(s_{t+1}, r_t | S_t = s_t, A_t = a_t)$  can be written  $p(s_{t+1}, r_t | s_t, a_t)$ .

Note: Exercise 3.2 can be done independently of 3.1.

<sup>a</sup>Remember the law of total expectations for conditional expected values:  
 $\mathbb{E}[A|B = b] = \int_{\mathcal{C}} p(c|B = b) \mathbb{E}[A|B = b, C = c]$

**Solution:** The first result comes from a direct application of total expectations:

$$v(s_t) = \mathbb{E}[G_t | s_t] = \int_{\mathcal{A}} \pi(a_t | s_t) \mathbb{E}[G_t | s_t, a_t] da_t = \int_{\mathcal{A}} \pi(a_t | s_t) q(s_t, a_t) da_t. \quad (4)$$

The second result can be obtained in a similar way:

$$\begin{aligned} q(s_t, a_t) &= \mathbb{E}[G_t | s_t, a_t] = \mathbb{E}[R_t + \gamma G_{t+1} | s_t, a_t] \\ &= \int_{\mathcal{S}} \int_{\mathcal{R}} p(s_{t+1}, r_t | s_t, a_t) [r_t + \gamma \mathbb{E}[G_{t+1} | s_t, a_t, s_{t+1}]] dr_t ds_{t+1} \\ &= \int_{\mathcal{S}} \int_{\mathcal{R}} p(s_{t+1}, r_t | s_t, a_t) [r_t + \gamma \mathbb{E}[G_{t+1} | s_{t+1}]] dr_t ds_{t+1} \\ &= \int_{\mathcal{S}} \int_{\mathcal{R}} p(s_{t+1}, r_t | s_t, a_t) [r_t + \gamma v(s_{t+1})] dr_t ds_{t+1}, \end{aligned} \quad (5)$$

where we have used: definition of  $G_t$ , definition of expected value of  $R_t$ , law of total expectations, Markov property and definition of  $v(s_t)$ .

## 2023, Exercise 3.2

Use Eq. 2 and Eq. 3 to derive the Bellman equations for the  $v$  function and for the  $q$  function. Discuss the meaning of these equations (you are encouraged to draw a diagram to improve the clarity of your explanation).

**Solution:** The Bellman equations for  $v$  and  $q$  can be obtained by simply combining the expressions obtained from the previous exercise:

$$v(s_t) = \int_{\mathcal{A}} \pi(a_t|s_t) \int_{\mathcal{S}} \int_{\mathcal{R}} p(s_{t+1}, r_t | s_t, a_t) [r_t + \gamma v(s_{t+1})] dr_t ds_{t+1} da_t \quad (6)$$

and

$$q(s_t, a_t) = \int_{\mathcal{S}} \int_{\mathcal{R}} p(s_{t+1}, r_t | s_t, a_t) [r_t + \gamma \int_{\mathcal{A}} \pi(a_{t+1}|s_{t+1}) q(s_{t+1}, a_{t+1}) da_{t+1}] dr_t ds_{t+1} \quad (7)$$

## 2024, Exercise 3.1

In Reinforcement Learning, policy gradient methods learn a *parametrized policy* that can select actions without considering a value function. We denote the policy parameter vector  $\theta \in \mathbb{R}^d$ , such that  $\pi(a|s, \theta) = \Pr\{A_t = a | S_t = s, \theta_t = \theta\}$  is the probability that action  $a$  is taken at time  $t$  given that the environment is in state  $s$  at time  $t$  with parameter  $\theta$ .

If the action space is discrete and not too large, then a natural parametrization is to form parametrized numerical preferences  $h(s, a, \theta) \in \mathbb{R}$  for each state-action pair. The probability of an action being selected is then given according to an exponential soft-max distribution:

$$\pi(a|s, \theta) \doteq \frac{e^{h(s, a, \theta)}}{\sum_b e^{h(s, b, \theta)}}$$

Suppose that the action space is the binary set  $\{0, 1\}$ , and let  $h(s, 0, \theta)$  and  $h(s, 1, \theta)$  be the preferences in state  $s$  for the two actions given policy parameter  $\theta$ . Assume that a state is defined by a feature vector  $\mathbf{x}(S_t)$ , and that we can express the difference between the action preferences as:

$$h(s, 1, \theta) - h(s, 0, \theta) = \theta^\top \mathbf{x}(s)$$

Show that if the exponential soft-max distribution is used to convert action preferences to policies, then the probability of taking action  $a = 1$  is given by:

$$\pi(a = 1|s, \theta) = \frac{1}{1 + e^{-\theta^\top \mathbf{x}(s)}}.$$

This is just a simple combination of the two given expressions to arrive at the desired formula. We apply the definition of the soft-max policy to the binary action space to get:

$$\pi(a = 1|s, \theta) = \frac{e^{h(s, 1, \theta)}}{e^{h(s, 1, \theta)} + e^{h(s, 0, \theta)}} = \frac{1}{1 + e^{h(s, 0, \theta) - h(s, 1, \theta)}} = \frac{1}{1 + e^{-\theta^\top \mathbf{x}(s)}}.$$

## 2024, Exercise 3.2

Express the eligibility  $\nabla_{\theta} \log \pi(a|s, \theta)$  for the above parametrization, in terms of  $a$ ,  $\mathbf{x}(s)$ , and  $\pi(a|s, \theta)$ .

We begin by expressing the policy in closed form:

$$\pi(a|s, \theta) = \left( \frac{1}{1 + e^{-\theta^T \mathbf{x}(s)}} \right)^a \left( 1 - \frac{1}{1 + e^{-\theta^T \mathbf{x}(s)}} \right)^{1-a} = \left( \frac{1}{1 + e^{-\theta^T \mathbf{x}(s)}} \right)^a \left( \frac{1}{1 + e^{\theta^T \mathbf{x}(s)}} \right)^{1-a}$$

Taking the logarithm yields:

$$\log \pi(a|s, \theta) = -a \log \left( 1 + e^{-\theta^T \mathbf{x}(s)} \right) + (a-1) \log \left( 1 + e^{\theta^T \mathbf{x}(s)} \right).$$

The derivative is then computed as:

$$\nabla_{\theta} \log \pi(a|s, \theta) = a \mathbf{x}(s) \frac{e^{-\theta^T \mathbf{x}(s)}}{1 + e^{-\theta^T \mathbf{x}(s)}} + (a-1) \mathbf{x}(s) \frac{e^{\theta^T \mathbf{x}(s)}}{1 + e^{\theta^T \mathbf{x}(s)}} = a \mathbf{x}(s) \pi(0|s, \theta) + (a-1) \mathbf{x}(s) \pi(1|s, \theta),$$

which we can finally simplify as

$$\nabla_{\theta} \log \pi(a|s, \theta) = (-1)^{1-a} \mathbf{x}(s) (1 - \pi(a|s, \theta))$$

## 2024, Exercise 3.3

Propose an update rule for the parameter  $\theta_t$  upon receipt of return  $G_t$ . (Note that  $\mathbb{E}_{\pi}[G_t|S_t, A_t] = q_{\pi}(S_t, A_t)$ .)

Recall equation (16) from the solutions of Week 13, which describes such an update rule:

$$\Theta_{i+1} = \Theta_i + \alpha q(s_t, a_t) \nabla_{\Theta} \log \pi(a_t|s_t),$$

where  $\alpha$  is the step size. We mentioned that, in practice, there are several methods for estimating  $q(s_t, a_t)$ , and the hint points us to the Monte-Carlo REINFORCE algorithm:

$$\Theta_{i+1} = \Theta_i + \alpha G_t \nabla_{\Theta} \log \pi(a_t|s_t),$$

which works because  $G_t$  is an unbiased estimate of  $q(s_t, a_t)$ .

**Attention**

## 2023, Exercise 2.1

The fundamental building block of transformers is the rescaled dot-product attention, defined as:

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^\top}{C}\right)V, \quad (8)$$

where  $Q, K \in \mathbb{R}^{d_i \times d_k}$  are the query and key matrices,  $V \in \mathbb{R}^{d_i \times d_v}$  is the value matrix and  $C \in \mathbb{R}^+$  is a positive rescaling constant<sup>a</sup>. The softmax operation is computed along each row of  $\frac{QK^\top}{C}$ .

Assuming that the elements of  $Q$  and  $K$  are independent and distributed as standard Gaussian distributions, what is the mean and the variance of each element of  $\frac{QK^\top}{C}$ ?

<sup>a</sup>Remember:  $[\text{softmax}(\mathbf{x})]_i = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$

**Solution:** We write the expression of the element  $(i, j)$  of the attention matrix (before softmax):

$$\left(\frac{QK^\top}{C}\right)_{i,j} = \frac{1}{C} \sum_{t=1}^{d_k} q_{i,t} k_{j,t}. \quad (9)$$

We can then compute the mean:

$$\mathbb{E}\left[\left(\frac{QK^\top}{C}\right)_{i,j}\right] = \frac{1}{C} \sum_{t=1}^{d_k} \mathbb{E}[q_{i,t}] \mathbb{E}[k_{j,t}] = 0 \quad (10)$$

where we have used that all the variables are independent standard Gaussians. Similarly for the variance:

$$\mathbb{V}\left[\left(\frac{QK^\top}{C}\right)_{i,j}\right] = \frac{1}{C^2} \sum_{t=1}^{d_k} \mathbb{V}[q_{i,t}] \mathbb{V}[k_{j,t}] = \frac{d_k}{C^2}, \quad (11)$$

as all the elements of the sum are 1.

## 2023, Exercise 2.2

For which value of  $C$  is the variance of each element of  $\frac{QK^\top}{C}$  equal to 1?

**Solution:** From the previous solution it immediately follows that, for  $C = \sqrt{d_k}$ , the variance is 1.

## 2023, Exercise 2.3

Compute  $\frac{\partial}{\partial q_{1,1}} \left[ \text{softmax} \left( \frac{QK^\top}{C} \right) \right]_{1,1}$ , i.e., the partial derivative of  $\left[ \text{softmax} \left( \frac{QK^\top}{C} \right) \right]_{1,1}$  (i.e., the first element of the first row of the attention matrix) with respect to  $q_{1,1}$  (i.e., the first element of the first row of the matrix  $Q$ ) in the case where  $d_i = 2$  (i.e., the matrices  $Q$ ,  $K$  and  $V$  have 2 rows). Express the result as a function of  $C$ ,  $k_{1,1}$  and  $k_{1,2}$  (i.e., the first elements of the first and the second rows of the matrix  $K$ ) and of  $T = \mathbf{q}_1^\top (\mathbf{k}_2 - \mathbf{k}_1)$ . With  $\mathbf{q}_1^\top$  and  $\mathbf{q}_2^\top$  we refer to the two rows of the matrix  $Q$ , while with  $\mathbf{k}_1^\top$  we refer to the first row of the matrix  $K$ .

Note: this can be done fully independent of Exercise 2.1.

### Solution:

$$\begin{aligned}
 \frac{\partial}{\partial q_{1,1}} \frac{\exp \left( \frac{\mathbf{q}_1^\top \mathbf{k}_1}{C} \right)}{\exp \left( \frac{\mathbf{q}_1^\top \mathbf{k}_1}{C} \right) + \exp \left( \frac{\mathbf{q}_1^\top \mathbf{k}_2}{C} \right)} &= \frac{\partial}{\partial q_{1,1}} \left( 1 + \exp \left( \frac{\mathbf{q}_1^\top (\mathbf{k}_2 - \mathbf{k}_1)}{C} \right) \right)^{-1} \\
 &= -\frac{1}{C} \left( 1 + \exp \left( \frac{\mathbf{q}_1^\top (\mathbf{k}_2 - \mathbf{k}_1)}{C} \right) \right)^{-2} \exp \left( \frac{\mathbf{q}_1^\top (\mathbf{k}_2 - \mathbf{k}_1)}{C} \right) (k_{2,1} - k_{1,1}) \\
 &= \frac{k_{1,1} - k_{2,1}}{C} \frac{\exp \left( \frac{T}{C} \right)}{\left( 1 + \exp \left( \frac{T}{C} \right) \right)^2}
 \end{aligned} \tag{12}$$

## 2023, Exercise 2.4

Compute

$$\lim_{T \rightarrow \infty} \frac{\partial}{\partial q_{1,1}} \left[ \text{softmax} \left( \frac{QK^\top}{C} \right) \right]_{1,1} \tag{13}$$

and

$$\mathbb{V} \left[ \frac{T}{C} \right], \tag{14}$$

(i.e., the variance of  $T/C$ ), under the assumption that all the elements of  $Q$  and  $K$  are distributed as independent standard Gaussian distributions.

### Solution:

$$\lim_{T \rightarrow \infty} \frac{\partial}{\partial q_{1,1}} \left[ \text{softmax} \left( \frac{QK^\top}{C} \right) \right]_{1,1} = \lim_{T \rightarrow \infty} \frac{k_{1,1} - k_{2,1}}{C} \frac{\exp \left( \frac{T}{C} \right)}{\left( 1 + \exp \left( \frac{T}{C} \right) \right)^2} = \lim_{T \rightarrow \infty} \frac{k_{1,1} - k_{2,1}}{C} \exp \left( -\frac{T}{C} \right) = 0 \tag{15}$$

$$\begin{aligned}
 \mathbb{V} \left[ \frac{T}{C} \right] &= \frac{1}{C^2} \mathbb{V} [\mathbf{q}_1^\top (\mathbf{k}_2 - \mathbf{k}_1)] = \frac{1}{C^2} \mathbb{V} \left[ \sum_{i=1}^{d_k} q_{1,i} (k_{2,i} - k_{1,i}) \right] = \\
 &= \frac{1}{C^2} \sum_{i=1}^{d_k} \mathbb{V} [q_{1,i}] \mathbb{V} [k_{2,i} - k_{1,i}] = \frac{2d_k}{C^2}
 \end{aligned} \tag{16}$$

## 2024, Exercise 2.5

Why might rescaling the product in the dot-product attention be important when backpropagating gradients (especially for large values of  $d_k$ )? Is the value of C found in Exercise 2.2 a good choice? Use the results found in the previous exercises to motivate your answers.

**Solution:** Because for large values of the attention matrix the gradient is very small (it goes to 0 exponentially). Therefore, we can expect problems backpropagating the gradients. Keeping the variance of the elements of the attention matrix under control can largely mitigate this problem. The rescaling factor  $\sqrt{d_k}$  keeps the size of the elements of the attention matrix in a reasonable range (and thus their gradient).