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Revision - Part 2

Reinforcement learning

2023, Exercise 3.1

Consider the definitions of v function and q function:

v(st) = E [Gt|St = st] and q(st, at) = E [Gt|St = st, At = at] , (1)

where st and at are the state and the action at step t of a Markov decision process, St and
At are the corresponding random variables, γ is the discount factor and Gt =

∑∞
k=0 γ

kRt+k

is the discounted cumulative reward (Rt is the random variable representing the reward
obtained at step t). Provide a proof of the following relations linking the q function and the
v function:

v(st) =

∫
A
π(at|St = st)q(st, at) dat (2)

and
q(st, at) =

∫
S

∫
R
p(st+1, rt|St = st, At = at)[rt + γv(st+1)] dst+1 drt, (3)

where π(at|St = st) is the action distribution defined by the policy and p(st+1, rt|St =
st, At = at) is the transition probability distribution, defining the probability of reaching
the state st+1 choosing the action at in the state st, and of obtaining a reward rt in the
process. Here A, S, and R are the action, state and reward spaces, respectively.a. In your
calculations, feel free to use the notation abuse for the conditioning to the observed values
of states and actions, so that, e.g., E [Gt|St = st] can be written E [Gt|st] and p(st+1, rt|St =
st, At = at) can be written p(st+1, rt|st, at).
Note: Exercise 3.2 can be done independently of 3.1.

aRemember the law of total expectations for conditional expected values:
E [A|B = b] =

∫
C p(c|B = b)E [A|B = b, C = c]

Solution: The first result comes from a direct application of total expectations:

v(st) = E [Gt|st] =
∫
A
π(at|st)E [Gt|st, at] dat =

∫
A
π(at|st)q(st, at) dat. (4)

The second result can be obtained in a similar way:

q(st, at) = E [Gt|st, at] = E [Rt + γGt+1|st, at]

=

∫
S

∫
R
p(st+1, rt|st, at)[rt + γE [Gt+1|st, at, st+1]] drt dst+1

=

∫
S

∫
R
p(st+1, rt|st, at)[rt + γE [Gt+1|st+1]] drt dst+1

=

∫
S

∫
R
p(st+1, rt|st, at)[rt + γv(st+1)] drt dst+1,

(5)

where we have used: definition of Gt, definition of expected value of Rt, law of total expectations,
Markov property and definition of v(st).
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2023, Exercise 3.2

Use Eq. 2 and Eq. 3 to derive the Bellman equations for the v function and for the q function.
Discuss the meaning of these equations (you are encouraged to draw a diagram to improve
the clarity of your explanation).

Solution: The Bellman equations for v and q can be obtained by simply combining the expressions
obtained from the previous exercise:

v(st) =

∫
A
π(at|st)

∫
S

∫
R
p(st+1, rt|st, at)[rt + γv(st+1)] drt dst+1 dat (6)

and

q(st, at) =

∫
S

∫
R
p(st+1, rt|st, at)[rt + γ

∫
A
π(at+1|st+1)q(st+1, at+1) dat+1] drt dst+1 (7)

2024, Exercise 3.1

In Reinforcement Learning, policy gradient methods learn a parametrized policy that can
select actions without considering a value function. We denote the policy parameter vector
θ ∈ Rd, such that π(a|s,θ) = Pr{At = a|St = s,θt = θ} is the probability that action a is
taken at time t given that the environment is in state s at time t with parameter θ.
If the action space is discrete and not too large, then a natural parametrization is to form
parametrized numerical preferences h(s, a,θ) ∈ R for each state-action pair. The probability
of an action being selected is then given according to an exponential soft-max distribution:

π(a|s,θ) .
=

eh(s,a,θ)∑
b e

h(s,b,θ)

Suppose that the action space is the binary set {0, 1}, and let h(s, 0,θ) and h(s, 1,θ) be the
preferences in state s for the two actions given policy parameter θ. Assume that a state
is defined by a feature vector x(St), and that we can express the difference between the
action preferences as:

h(s, 1,θ)− h(s, 0,θ) = θ⊤x(s)

Show that if the exponential soft-max distribution is used to convert action preferences to
policies, then the probability of taking action a = 1 is given by:

π(a = 1|s,θ) = 1

1 + e−θ⊤x(s)
.

This is just a simple combination of the two given expressions to arrive at the desired formula.
We apply the definition of the soft-max policy to the binary action space to get:

π(a = 1|s,θ) = eh(s,1,θ)

eh(s,1,θ) + eh(s,0,θ)
=

1

1 + eh(s,0,θ)−h(s,1,θ)
=

1

1 + e−θ⊤x(s)
.
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2024, Exercise 3.2

Express the eligibility ∇θ log π(a|s,θ) for the above parametrization, in terms of a, x(s), and
π(a|s,θ).

We begin by expressing the policy in closed form:

π(a|s,θ) =
(

1

1 + e−θ⊤x(s)

)a (
1− 1

1 + e−θ⊤x(s)

)1−a

=

(
1

1 + e−θ⊤x(s)

)a (
1

1 + eθ
⊤x(s)

)1−a

Taking the logarithm yields:

log π(a|s,θ) = −a log
(
1 + e−θ⊤x(s)

)
+ (a− 1) log

(
1 + eθ

⊤x(s)
)
.

The derivative is then computed as:

∇θ log π(a|s,θ) = ax(s)
e−θ⊤x(s)

1 + e−θ⊤x(s)
+(a−1)x(s)

eθ
⊤x(s)

1 + eθ
⊤x(s)

= ax(s)π(0|s,θ)+(a−1)x(s)π(1|s,θ),

which we can finally simplify as

∇θ log π(a|s,θ) = (−1)1−ax(s) (1− π(a|s,θ))

2024, Exercise 3.3

Propose an update rule for the parameter θt upon receipt of return Gt. (Note that
Eπ[Gt|St, At] = qπ(St, At).)

Recall equation (16) from the solutions of Week 13, which describes such an update rule:

Θi+1 = Θi + αq(st, at)∇Θ log π(at|st),

where α is the step size. We mentioned that, in practice, there are several methods for estimating
q(st, at), and the hint points us to the Monte-Carlo REINFORCE algorithm:

Θi+1 = Θi + αGt∇Θ log π(at|st),

which works because Gt is an unbiased estimate of q(st, at).
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Attention

2023, Exercise 2.1

The fundamental building block of transformers is the rescaled dot-product attention, de-
fined as:

Attention(Q,K, V ) = softmax
(
QK⊤

C

)
V, (8)

where Q,K ∈ Rdi×dk are the query and key matrices, V ∈ Rdi×dv is the value matrix and
C ∈ R+ is a positive rescaling constanta. The softmax operation is computed along each
row of QK⊤

C .
Assuming that the elements of Q and K are independent and distributed as standard Gaus-
sian distributions, what is the mean and the variance of each element of QK⊤

C ?

aRemember: [softmax(x)]i =
exp(xi)∑
j exp(xj)

Solution: We write the expression of the element (i, j) of the attention matrix (before softmax):(
QK⊤

C

)
i,j

=
1

C

dk∑
t=1

qi,tkj,t. (9)

We can then compute the mean:

E

[(
QK⊤

C

)
i,j

]
=

1

C

dk∑
t=1

E[qi,t]E[kj,t] = 0 (10)

where we have used that all the variables are independent standard Gaussians. Similarly for the
variance:

V

[(
QK⊤

C

)
i,j

]
=

1

C2

dk∑
t=1

V[qi,t]V[kj,t] =
dk
C2

, (11)

as all the elements of the sum are 1.

2023, Exercise 2.2

For which value of C is the variance of each element of QK⊤

C equal to 1?

Solution: From the previous solution it immediately follows that, for C =
√
dk, the variance is 1.
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2023, Exercise 2.3

Compute ∂
∂q1,1

[
softmax

(
QK⊤

C

)]
1,1

, i.e., the partial derivative of
[
softmax

(
QK⊤

C

)]
1,1

(i.e.,

the first element of the first row of the attention matrix) with respect to q1,1 (i.e., the first
element of the first row of the matrix Q) in the case where di = 2 (i.e., the matrices Q,
K and V have 2 rows). Express the result as a function of C, k1,1 and k1,2 (i.e., the first
elements of the first and the second rows of the matrix K) and of T = q⊤

1 (k2 − k1). With
q⊤
1 and q⊤

2 we refer to the two rows of the matrix Q, while with k⊤
1 we refer to the first row

of the matrix K.
Note: this can be done fully independent of Exercise 2.1.

Solution:

∂

∂q1,1

exp
(

q⊤
1 k1

C

)
exp

(
q⊤
1 k1

C

)
+ exp

(
q⊤
1 k2

C

) =
∂

∂q1,1

(
1 + exp

(
q⊤
1 (k2 − k1)

C

))−1

= − 1

C

(
1 + exp

(
q⊤
1 (k2 − k1)

C

))−2

exp

(
q⊤
1 (k2 − k1)

C

)
(k2,1 − k1,1)

=
k1,1 − k2,1

C

exp
(
T
C

)(
1 + exp

(
T
C

))2
(12)

2023, Exercise 2.4

Compute

lim
T→∞

∂

∂q1,1

[
softmax

(
QK⊤

C

)]
1,1

(13)

and

V
[
T

C

]
, (14)

(i.e., the variance of T/C), under the assumption that all the elements of Q and K are
distributed as independent standard Gaussian distributions.

Solution:

lim
T→∞

∂

∂q1,1

[
softmax

(
QK⊤

C

)]
1,1

= lim
T→∞

k1,1 − k2,1
C

exp
(
T
C

)(
1 + exp

(
T
C

))2 = lim
T→∞

k1,1 − k2,1
C

exp

(
−T

C

)
= 0

(15)

V
[
T

C

]
=

1

C2
V
[
q⊤
1 (k2 − k1)

]
=

1

C2
V

[
dk∑
i=1

q1,i(k2,i − k1,i)

]
=

1

C2

dk∑
i=1

V [q1,i]V [k2,i − k1,i] =
2dk
C2

(16)
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2024, Exercise 2.5

Why might rescaling the product in the dot-product attention be important when backprop-
agating gradients (especially for large values of dk)? Is the value of C found in Exercise 2.2
a good choice? Use the results found in the previous exercises to motivate your answers.

Solution: Because for large values of the attention matrix the gradient is very small (it goes to 0
exponentially). Therefore, we can expect problems backpropagating the gradients. Keeping the
variance of the elements of the attention matrix under control can largely mitigate this problem.
The rescaling factor

√
dk keeps the size of the elements of the attention matrix in a reasonable

range (and thus their gradient).
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